Course Code:CSC303M3/CSC308S3
Course Title:Artificial Intelligence
Credit Value:03
Core/Optional:core
Hourly Breakdown:TheoryPracticalIndependent Learning
3030140
Objectives:Provide in-depth knowledge on design and analysis of intelligent systems for solving problems that are difficult or impractical to resolve using traditional approaches
Intended Learning Outcomes:
  • Formulate an efficient Intelligent system model for a problem expressed in natural language
  • Use knowledge representation for theorem proving based on resolution procedure
  • Apply appropriate uninformed, informed or local search algorithms for solving problems
  • Develop logic programs with the significance of language semantics
  • Devise a plan of action to achieve a goal using standard AI methods
  • Illustrate the working of natural language processing techniques
Contents:
  • Introduction: Practical examples of artificial intelligence, intelligent agents, environments, intelligent behaviour, rational behaviour & Turing test
  • Problem Solving by Searching: Problem-solving agents, uninformed search strategies, informed (Heuristic) search strategies
  • Local Search and Optimization Algorithms: Hill climbing search, simulated annealing, local beam search, genetic algorithms, searching in different environments, adversarial search
  • Planning: Classical planning, planning as state-space search
  • Knowledge Representation: Horn clause, resolution, theorem proving, ontology engineering, representing objects and events
  • Natural Language Processing: Language models, text classification, information retrieval, information extraction
Teaching/Learning Methods:Lectures, Tutorial discussions, Guided learning, Assignments
Assessment Strategy:
  • In-course Assessments (Theory) —————————–15%
  • In-course Assessments (Practical) —————————15%
  • End-of-course Examination ———————————---70%
References:
  • S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Ed., Prentice Hall, 2010.
  • G.F. Luger, Artificial Intelligence – Structures and Strategies for Complex Problem Solving, 6th Ed., Pearson & Addison Wesley, 2009.
  • P. H. Winston, Artificial Intelligence, 1st Ed., Addison Wesley, 1993.

In this course we will cover some advanced topics in Data communication.

This course introduces topics such as routing in networks, software defined networks etc.